En ocasiones la repetición de la medida de una magnitud conduce siempre al mismo valor. Como ejemplo, consideremos la medida de la longitud de un objeto con una regla graduada en milímetros. Si la medida se realiza con cierta atención, todas las medidas del objeto proporcionan el mismo valor. Es evidente que en este caso la teoría anterior no resulta aplicable, porque al ser nula la dispersión, la desviación estándar resulta igual a cero. En estos casos, la fuente de error no está en la superposición de muchas causas aleatorias, sino en la sensibilidad del aparato de medida.
En efecto, el hecho de que todas las medidas sean iguales no indica en general que no haya error accidental, sino que éste es demasiado pequeño para quedar reflejado en el aparato. En el ejemplo anterior, si el error accidental de las medidas es del orden de 0,001 mm es evidente que la regla no podrá apreciarlo, resultando todas las medidas iguales. En estos casos es necesario estimar el error debido a la sensibilidad finita del aparato de medida.
Se llama sensibilidad de un aparato a la mínima variación de la magnitud medida que es capaz de detectar. En los instrumentos analógicos coincide frecuentemente con la mínima división de la escala. En el ejemplo anterior la sensibilidad de la regla es de 1 mm.
Suele llamarse apreciación al máximo error que puede cometerse debido a la sensibilidad del aparato. Generalmente se considera como la mitad de la sensibilidad. Esto puede comprenderse con un ejemplo. Supongamos un voltímetro de 0,1 V de sensibilidad, cuya aguja indica una tensión comprendida entre 2,1 V y 2,2 V, es decir, la aguja señala un punto intermedio entre las dos marcas o divisiones de la escala. Si el aparato está bien diseñado, una persona con apreciación visual media debe ser capaz de decidir si la aguja está más cerca de 2,1 V o de 2,2 V. Cometeremos el máximo error cuando la aguja se encuentre justamente en el centro de las dos divisiones. En tal caso el error de dar como lectura 2,1 V o 2,2 V es de 0,05 V, es decir la mitad de la sensibilidad.
En efecto, el hecho de que todas las medidas sean iguales no indica en general que no haya error accidental, sino que éste es demasiado pequeño para quedar reflejado en el aparato. En el ejemplo anterior, si el error accidental de las medidas es del orden de 0,001 mm es evidente que la regla no podrá apreciarlo, resultando todas las medidas iguales. En estos casos es necesario estimar el error debido a la sensibilidad finita del aparato de medida.
Se llama sensibilidad de un aparato a la mínima variación de la magnitud medida que es capaz de detectar. En los instrumentos analógicos coincide frecuentemente con la mínima división de la escala. En el ejemplo anterior la sensibilidad de la regla es de 1 mm.
Suele llamarse apreciación al máximo error que puede cometerse debido a la sensibilidad del aparato. Generalmente se considera como la mitad de la sensibilidad. Esto puede comprenderse con un ejemplo. Supongamos un voltímetro de 0,1 V de sensibilidad, cuya aguja indica una tensión comprendida entre 2,1 V y 2,2 V, es decir, la aguja señala un punto intermedio entre las dos marcas o divisiones de la escala. Si el aparato está bien diseñado, una persona con apreciación visual media debe ser capaz de decidir si la aguja está más cerca de 2,1 V o de 2,2 V. Cometeremos el máximo error cuando la aguja se encuentre justamente en el centro de las dos divisiones. En tal caso el error de dar como lectura 2,1 V o 2,2 V es de 0,05 V, es decir la mitad de la sensibilidad.
Es frecuente expresar el error instrumental o de lectura eins de forma que en el intervalo (m-eins,m+eins) haya un 68 % de probabilidad de encontrar el valor de magnitud medida. Se escoge este valor por coherencia con la definición de desviación estándar de la distribución normal. Por las consideraciones anteriores podemos suponer que el valor de la magnitud medida se encuentra con seguridad en el intervalo donde s es la sensibilidad y s/2 por tanto la apreciación. Si se acepta que es igualmente probable que el valor de la magnitud se encuentre en cualquier punto de este intervalo, para reducir la probabilidad al 68 %, debemos reducir el intervalo proporcionalmente, es decir, en un factor aproximado de 2/3. Con ello el radio del intervalo resulta:
En resumen, el error instrumental de una medida se expresa frecuentemente por:
donde s es la sensibilidad del aparato de medida.
Hemos visto que cuando el error instrumental es mucho mayor que el accidental, éste queda enmascarado por aquel. El efecto inverso es también posible. Por tanto, en los casos en que el error accidental de una medida sea mucho mayor que el instrumental, sólo consideraremos el error accidental.
En aquellos casos en que los errores sean del mismo orden de magnitud, puede considerarse que el error total es la suma de los dos:
donde eins es el error instrumental y es el error accidental expresado por la desviación estándar.
En resumen, el error instrumental de una medida se expresa frecuentemente por:
donde s es la sensibilidad del aparato de medida.
Hemos visto que cuando el error instrumental es mucho mayor que el accidental, éste queda enmascarado por aquel. El efecto inverso es también posible. Por tanto, en los casos en que el error accidental de una medida sea mucho mayor que el instrumental, sólo consideraremos el error accidental.
En aquellos casos en que los errores sean del mismo orden de magnitud, puede considerarse que el error total es la suma de los dos:
donde eins es el error instrumental y es el error accidental expresado por la desviación estándar.
No hay comentarios:
Publicar un comentario